In the previous tutorial, I defined a “shoot” method to compute the landing point of a shoot from one point, to a given azimuth and distance. Using this logic, it’s possible to find the points situated at a given distance from a “centre” point, a circle.
The goal:
Drawing circles of a given radius around any point on earth.
The process:
We call the “shoot” method 360 times, one time per azimuth. We store the obtained locations in an array, that we plot. The “equi” method is defined as :
def equi(m, centerlon, centerlat, radius, *args, **kwargs): glon1 = centerlon glat1 = centerlat X = [] Y = [] for azimuth in range(0, 360): glon2, glat2, baz = shoot(glon1, glat1, azimuth, radius) X.append(glon2) Y.append(glat2) X.append(X[0]) Y.append(Y[0]) #m.plot(X,Y,**kwargs) #Should work, but doesn't... X,Y = m(X,Y) plt.plot(X,Y,**kwargs)
In the image above, we called the method in a loop:
radii = [500,1000,2000,3000,4000] # Set number 1: centerlon = 4.360515 centerlat = 50.79747 for radius in radii: equi(m, centerlon, centerlat, radius,lw=2.)
Fairly easy, isn’t it ?
Note : I’ve changed the projection type in this example, which led to a small bug: calling m.plot(X,Y) didn’t work, I have to convert X,Y using m(X,Y) …
The code is after this break:
# # BaseMap example by geophysique.be # tutorial 09 from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt import numpy as np ### PARAMETERS FOR MATPLOTLIB : import matplotlib as mpl mpl.rcParams['font.size'] = 10. mpl.rcParams['font.family'] = 'Comic Sans MS' mpl.rcParams['axes.labelsize'] = 8. mpl.rcParams['xtick.labelsize'] = 6. mpl.rcParams['ytick.labelsize'] = 6. def shoot(lon, lat, azimuth, maxdist=None): """Shooter Function Original javascript on http://williams.best.vwh.net/gccalc.htm Translated to python by Thomas Lecocq """ glat1 = lat * np.pi / 180. glon1 = lon * np.pi / 180. s = maxdist / 1.852 faz = azimuth * np.pi / 180. EPS= 0.00000000005 if ((np.abs(np.cos(glat1))<EPS) and not (np.abs(np.sin(faz))<EPS)): alert("Only N-S courses are meaningful, starting at a pole!") a=6378.13/1.852 f=1/298.257223563 r = 1 - f tu = r * np.tan(glat1) sf = np.sin(faz) cf = np.cos(faz) if (cf==0): b=0. else: b=2. * np.arctan2 (tu, cf) cu = 1. / np.sqrt(1 + tu * tu) su = tu * cu sa = cu * sf c2a = 1 - sa * sa x = 1. + np.sqrt(1. + c2a * (1. / (r * r) - 1.)) x = (x - 2.) / x c = 1. - x c = (x * x / 4. + 1.) / c d = (0.375 * x * x - 1.) * x tu = s / (r * a * c) y = tu c = y + 1 while (np.abs (y - c) > EPS): sy = np.sin(y) cy = np.cos(y) cz = np.cos(b + y) e = 2. * cz * cz - 1. c = y x = e * cy y = e + e - 1. y = (((sy * sy * 4. - 3.) * y * cz * d / 6. + x) * d / 4. - cz) * sy * d + tu b = cu * cy * cf - su * sy c = r * np.sqrt(sa * sa + b * b) d = su * cy + cu * sy * cf glat2 = (np.arctan2(d, c) + np.pi) % (2*np.pi) - np.pi c = cu * cy - su * sy * cf x = np.arctan2(sy * sf, c) c = ((-3. * c2a + 4.) * f + 4.) * c2a * f / 16. d = ((e * cy * c + cz) * sy * c + y) * sa glon2 = ((glon1 + x - (1. - c) * d * f + np.pi) % (2*np.pi)) - np.pi baz = (np.arctan2(sa, b) + np.pi) % (2 * np.pi) glon2 *= 180./np.pi glat2 *= 180./np.pi baz *= 180./np.pi return (glon2, glat2, baz) def equi(m, centerlon, centerlat, radius, *args, **kwargs): glon1 = centerlon glat1 = centerlat X = [] Y = [] for azimuth in range(0, 360): glon2, glat2, baz = shoot(glon1, glat1, azimuth, radius) X.append(glon2) Y.append(glat2) X.append(X[0]) Y.append(Y[0]) #~ m.plot(X,Y,**kwargs) #Should work, but doesn't... X,Y = m(X,Y) plt.plot(X,Y,**kwargs) fig = plt.figure(figsize=(11.7,8.3)) #Custom adjust of the subplots plt.subplots_adjust(left=0.05,right=0.95,top=0.90,bottom=0.05,wspace=0.15,hspace=0.05) ax = plt.subplot(111) #Let's create a basemap of the world m = Basemap(resolution='l',projection='robin',lon_0=0) m.drawcountries() m.drawcoastlines() m.fillcontinents(color='grey',lake_color='white') m.drawparallels(np.arange(-90.,120.,30.)) m.drawmeridians(np.arange(0.,360.,60.)) m.drawmapboundary(fill_color='white') radii = [500,1000,2000,3000,4000] # Set number 1: centerlon = 4.360515 centerlat = 50.79747 for radius in radii: equi(m, centerlon, centerlat, radius,lw=2.) # Set number 2: centerlon = -64.360515 centerlat = -30.79747 for radius in radii: equi(m, centerlon, centerlat, radius,lw=2.) # Set number 3: centerlon = 104.360515 centerlat = -40.79747 for radius in radii: equi(m, centerlon, centerlat, radius,lw=2.) plt.savefig('tutorial09.png',dpi=300) plt.show()
What units must the radii you define be in order for the plotting to be accurate?
Matthew,
I think it’s the same units as your map, thus degrees, meters, it depends.